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Statistical analysis of the non-homogeneity detector
for STAP applications
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Abstract

We present a statistical analysis of the recently proposed non-homogeneity detector (NHD) for
Gaussian interference statistics. Specifically, we show that a formal goodness-of-fit test can be con-
structed by accounting for the statistics of the generalized inner product (GIP) used as the NHD test
statistic. The normalized-GIP follows a central-F distribution and admits a canonical representation
in terms of two statistically independent chi-squared distributed random variables. Moments of the
GIP can be readily calculated as a result. These facts are used to derive the goodness-of-fit tests,
which facilitate intelligent training data selection. We then address the issue of space-time adaptive
processing (STAP) algorithm performance using the NHD as a pre-processing step for training data
selection. Performance of the adaptive matched filter (AMF) method is reported using simulated as
well as measured data.
© 2003 Elsevier Inc. All rights reserved.

Keywords: STAP; Non-homogeneity detector; F-distribution; Goodness-of-fit test; GIP; AMF; False alarm
probability; Detection probability; Signal-to-noise-ratio (SNR)

1. Introduction

An important issue in space-time adaptive processing (STAP) for radar target detection
is the formation and inversion of the covariance matrix underlying the clutter and inter-
ference. Typically, the unknown interference covariance matrix is estimated from a set of
independent identically distributed (iid) target-free training data that is representative of

the interference statistics in a cell under test. Frequently, the training data is subject to
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contamination by discrete scatterers or interfering targets. In either event, the training data
becomes non-homogeneous. Consequently, it is not representative of the interference in the
test cell. Estimates of the covariance matrix from non-homogeneous training data result in
severely under-nulled clutter. Consequently, CFAR and detection performance suffer. How-
ever, significant performance improvement can be achieved by employing a pre-processing
technique to select representative training data.

The problem of target detection using improved training strategies has been considered
in [6,7,14,15]. The impact of non-homogeneity on STAP performance is considered in
[10,16,17,19]. It was shown in [21] that the distribution information of a class of multi-
variate probability density functions (PDF) is succinctly determined through an equivalent
univariate PDF of a quadratic form. An application of this result is the non-homogeneity
detector (NHD) based on the generalized inner product (GIP) [6,7,10,14,15].

Non-homogeneity of the training data arises due to a number of factors such as con-
taminating targets, presence of strong discretes, and non-stationary reflectivity properties
of the scattering surface. In these scenarios, the test cell disturbance covariance matrix,
RT, differs significantly from the estimated covariance matrix, R, formed using target-free
disturbance realizations from adjacent reference cells. If a large number of test cell data
realizations are available, the underlying non-homogeneity is characterized via the eigen-
values of R-1 RT [8]. However, in radar applications, only a single realization of test cell
data is usually available. Consequently, the resulting estimate of RT is singular. Hence,
[6,7,10,14,15] compared the empirically formed GIP with a theoretical mean correspond-
ing to a "known" covariance matrix. Large deviations of the GIP mean value from the
theoretical mean have been ascribed to non-homogeneity of the training data. Such an ap-
proach provides meaningful results in the limit of large training data size. In practice, the
amount of training data available for a given application is limited by system considerations
such as bandwidth and fast scanning arrays. Furthermore, the inherent temporal and spa-
tial non-stationarity of the interference precludes the collection of large amounts of training
data. Consequently, the approach of [6,7,10,14,15] can be misleading since it ignores finite
data effects and the resulting variability in the covariance matrix estimate [20]. Specifically,
we note that the empirical GIP mean using an estimated covariance matrix with finite data
can be twice as large as the corresponding GIP mean for a known covariance matrix in
some instances. Consequently, such a scenario can easily lead to incorrect classification of
training data.

The normalized GIP, P', admits a remarkably simple stochastic representation as the
ratio of two statistically independent chi-square distributed random variables [20]. Conse-
quently, the normalized GIP follows a central-F distribution [1,4,24]. The main result of
this paper lies in exploiting these facts to construct a formal goodness-of-fit test for se-
lecting homogeneous training data and its application to the performance of the adaptive
matched filter (AMF) test [5,9,22]. Other applications of the F-distribution can be found in
[2,3,12].

Section 2 briefly reviews the GIP statistics for the case of a known covariance matrix.
In Section 3 we discuss the GIP statistics for the case of an unknown covariance matrix.
Section 4 introduces the non-homogeneity detector and derives formal goodness-of-fit tests
based on the GIP statistics described in Section 3. The AMF test performance with and
without training data contamination using simulated and measured data is presented in
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Section 5. The AMF performance is shown to degrade with contaminated training data.
It is further shown in Section 5 that the use of NHD pre-processing enables selection of
representative training data. Consequently, use of NHD pre-processing restores the AMF
test performance to case where there is no training data contamination.

2. GIP statistics: known covariance matrix

Let x = [XI, x2 .... XM]T denote a complex random vector with zero mean and known
positive definite Hermitian covariance matrix R. The quadratic form given by

Q = XHR-lx (2.1)

has the important property [20]

E(Q) = M. (2.2)

This result is important in that it is independent of the PDF underlying x and is only a func-
tion of the dimension of the random vector. If the PDF of x is known, the corresponding
PDF of Q can be readily derived. For Gaussian distributed x, i.e., x - CN(O, R), the PDF
of Q is a chi-squared distribution with M complex degrees of freedom. More precisely the
PDF of Q is given by

Sq M-0

fa(q) = r-- exp(-q) ohri (2.3)
10 otherwise

where r(.) is the Euler-Gamma function.
The GIP based NHD calculates the quadratic form Q using an estimated covariance

matrix (formed from iid target free training data) and compares its mean with M. Devia-
tions from M have been attributed to non-homogeneities in the training data [6,7,10,14,15].
In practice, the interference covariance matrix is formed from a finite amount of training
data. The statistical variability associated with the data could introduce additional errors
and thus, deviations of the GIP from M cannot entirely be ascribed to the presence of non-
homogeneities. Consequently, it is useful to work with the statistics of Q formed with an
estimated covariance matrix with finite sample support. The GIP PDF and moments are
quite different from those of Eqs. (2.2) and (2.3) for the finite sample support problem.

3. GIP statistics: unknown covariance matrix

Let x - CN(O, RT) denote the test data vector and Z denote a data matrix, whose
columns Zk, k = 1,2 ... , K, are iid CN(O, R) target-free training data vectors. For ho-
mogeneous (representative) training data, RT = R. The sample covariance matrix given
by R - _ZZH is the maximum likelihood estimate of the covariance matrix. Let

P = x1 1 -Rx. (3.1)
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We derive a canonical stochastic representation for the normalized GIP, P' = P/K, in
terms of two statistically independent chi-squared distributed random variables in Appen-
dix A. Consequently, we have

P = RI(3.2)
R2 1K

where R1 and R2 are statistically independent chi-squared distributed random variables
with PDFs given by

fR(r i) exp(-rl) rl > 0 (3.3)

10 otherwise

K-M0f 2 (r2) j F(K-M + 1) exp(-r2) r2 w> 0 (3.4)
10 otherwise

respectively. Consequently, P' follows a central-F distribution [1,4,24] given by

(pI)M-1

fP'(P') = fl(M, L)(I + p,)L+M / 0 (3.5)

10 otherwise

where fP(M, L) - f01 fM-1(1 - r.)L1 dg and L = K - M + 1.
The statistical equivalence of P' to the ratio of two independent chi-squared distrib-

uted random variables is fascinating in that it permits rapid calculation of the moments
of P. More importantly, it is extremely useful in Monte-Carlo studies involving computer
generation of P. For homogeneous training data, the use of (3.2) circumvents the need to
explicitly generate the test data vector x and the training data vectors used for covariance
estimation. For large M and perforce K, significant computational savings can be realized
from the method of (3.2). It can be readily shown that

M
E(P) = (I - M' (3.6)

Var(P) = 2 M (3.7)(1- )2[1 - (--

where E (P) and Var(P) denote the mean and variance of P, respectively. Observe that the
moments of P formed from an estimated covariance matrix (sample covariance matrix)
with finite sample support deviate significantly from the corresponding moments for the
case of a known covariance matrix given by (2.1) and (2.2). For example with K = 2M,
there is a 100% deviation of the mean of (3.6) from that of (2.1). Therefore, comparing an
empirically formed GIP with the theoretical mean of (2.1) provides misleading results in
that a finite data effect is ascribed to training data non-homogeneity.

We then study the representation of (3.2) in the limit of large K. For this purpose, we
consider the characteristic function of R2 /K given by

OR2 /K(j)) = E [exp jw ]= 1 o- l (3.8)

() 1 ± i)K-M+1
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For K --> o, we have lirn qR2/K(jIO) = exp(-jo.). Taking the inverse Fourier trans-
K- oo

form, we have

"lim fR 2/K(r) =B(r -1). (3.9)
K--+oo

Hence, for K --* o, R2 /K becomes unity with probability one. Thus, the GIP for this
case is simply R1 and hence, follows a chi-squared distribution with M complex degrees
of freedom. Consequently, for K --+ c, E(P) = ap = M corresponding to the known co-
variance matrix results. Hence, the GIP statistical representation given by (3.2) provides
additional insights on the NHD. The numerator random variable corresponds to the GIP
statistics for known covariance matrix. The denominator random variable succinctly em-
beds the deleterious effects of estimating the covariance matrix with finite sample support.
Deviation of the normalized GIP statistics from the PDF of (3.5) can then be attributed to
non-homogeneity of the training data.

Figure 1 shows the PDF of P' for several values of K with M = 8 for Gaussian in-
terference statistics. Observe that the variance of P' decreases with increasing K. This is
anticipated since R -* R with probability 1 as K -> oc. Therefore, the statistics of P, in-
cur a dependence on K resulting from the use of finite sample support in estimating the
covariance matrix.

The results presented in Fig. 2 correspond to the case of homogeneous training data.
They show a comparison of the histogram of P' obtained from Monte-Carlo realizations
using simulated data with the theoretically predicted PDF of P' obtained from (3.5). The
results reveal good agreement between the theoretical prediction and the empirically gen-
erated values. The mean value of P, 15.957, obtained via 50,000 Monte-Carlo realizations
compares well with the theoretically predicted value of 16.

Normalized GIP PDF
3.5 K=2M

3K=3M3 - M=8 -e- K=4M

0~

2

S1.5
D

0Z
0.5

0.
0 1 2 3, 4 5

Normalized GIP (p)

Fig. 1. Normalized GIP PDE
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4. Non-homogeneity detector

We now present two methods for selecting homogeneous data from a set of training data.
The first method exploits the central-F distribution of P' given by (3.5) to construct a for-
mal goodness-of-fit test, while the second method relies upon a comparison of empirically
formed P' with the theoretical mean predicted by (3.6) and discarding those realizations
for which P' deviates significantly from the theoretical mean. More precisely, the differ-
ence between the empirical realizations of P' and the theoretically calculated mean value
is obtained for each realization of P'. This difference is then rank ordered and the training
data realizations corresponding to the least deviation from the theoretical mean are retained
for subsequent use in STAP algorithms. The cumulative distribution function of P, is given
by

Pr(P' < r)= 1- betainclG + M, L), (4.1 a)

where

betainc(x, m, n) -- f -(I -w-(mdw. (4.)b)

0

The goodness-of fit test consists of determining whether realizations of P formed from a
given set of training data are statistically consistent with the PDF of (2. 1). For this purpose a
suitable type-I error, a, is chosen. More precisely, a is simply the probability of incorrectly
rejecting the hypothesis that a given realization of P' is statistically consistent with the PDF
of (3.5). Specifically, we seek a threshold, X, such that

a = Pr(P' > X) = 1- Pr(P' < X) = betainc( -1+ M, L), (4.2)

where X is determined from a numerical inversion of (4.2). The goodness-of-fit test con-
sists of forming realizations of P' from a set of training data and rejecting those training
data vectors for which P' exceeds X. The second method is based on comparing the real-
izations of P with the theoretically predicted mean of P given by (3.6) and retaining those
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Fig. 3. Type-I error versus threshold.

realizations exhibiting the least deviation from the theoretically predicted mean of (3.6):
Examples that illustrate the two approaches are presented. For a given training data set, a
moving window approach is used to form realizations of P'. This approach is sub-optimal
because it does not guarantee statistical independence of the realizations of P'. However,
we adopt this approach due to the limited training data support. For the examples presented
here, data from the MCARM program [ 13] corresponding to 16 pulses and 8 channels from
acquisition '220' on Flight 5, cycle 'e' is used.

Figure 3 plots the type-I error (a) versus threshold for M = 64. Here different values of
K are chosen to illustrate the threshold behavior. For each value of a, X is determined from
a numerical inversion of (4.2). For a given a, we observe an increase in X for a given K.

The plot in Fig. 4 shows P' and X corresponding to a = 0.1 as a function of range.
A moving window approach is used to obtain P' for each range cell considered. Non-
homogeneity of the training data is seen in those range cells for which P' exceeds X.
Figure 5 plots the normalized GIP as a function of range. The normalized GIP theoretical
mean is obtained from (3.6) with a simple normalization is also shown. Values of the nor-
malized GIP, which exceed the theoretical mean correspond to non-homogeneous training
data realizations.

5. Performance analysis of the AMF test

In this section, we consider the performance analysis of the AMF test [5,9,22] in non-
homogeneous training data. The AMF test is given by

IsH•t-xI2 <=Xnll•AMF, (5.1)

where s is the spatio-temporal steering vector, x is the received data vector, R is the sam-
ple covariance matrix given by R = 1 zF' zizH with zi denoting independent identically
distributed training data and XAMF is a threshold selected to obtain a desired probability of
false alarm.
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Fig. 4. Normalized GIP versus range.
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Fig. 5. Normalized GIP versus range.

For the case of homogeneous training data, analytical expressions for the probability of
false alarm and probability of detection are given by [22]
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fa f fp (p) dp (5.2)
(1 + PXAMF)L

0

1L

d 1-f +(L) k;,k G pb 1 fp (p) dp(5)
Pd=] 0 -- kk) P AMF~k (1+-J P-AAMF) (1 + PXAMF)(5.3)

where
(1 W = P)M-2pL

Pfl(M - 1, L + 1)

k-1 n

Gk(X) = exp(-x) E n-- (5.5)
n=

and 'b' is related to the output signal-to-noise ratio (SNR). For K ---> o, the sample co-
variance matrix tends to the true clutter covariance matrix, R. Consequently, the AMF test
converges to the matched filter (optimal receiver in Gaussian disturbance) for large K. The
expressions for the matched filter Pfa and Pd are given by [22]

Pfa = exp(-X-MF), (5.6)

Pd= exp(-A) E - [1 - Gk (XMF)], (5.7)

k=O

where A is related to the output SNR and XMF is the matched filter threshold.
Figure 6 presents Pd versus output signal-to-interference plus noise ratio (SINR). Rele-

vant test parameters are reported in the plot. The matched filter (MF) curve obtained from
(5.7) corresponds to the optimal performance in Gaussian clutter. The Pd curve for the
AMF operating in homogeneous Gaussian clutter follows from (5.3) and exhibits perfor-
mance to within 3 dB of the ME The AMF performance operating in non-homogeneous
training data with and without NHD pre-processing is carried out by Monte-Carlo sim-
ulation. For this example, the training data contained thirty high-amplitude, mainbeam
discrete targets located at various range cells and Doppler frequencies. Initial sample sup-
port for NHD pre-processing is 6M. A sliding window approach is used to select a subset
consisting of 4M training data realizations. Each GIP value obtained at a specific range
cell is computed using R formed from 2M adjacent training data vectors. Previously, we
noted the sub-optimality of this scheme. In practice, its use is dictated by training data size
limitations. In this manner 4M GIP values are obtained. The NHD pre-processing used
in this example is based on a comparison of the empirical GIP with its theoretical mean
value given by (3.6). The training data used in forming R after NHD processing is ob-
tained by sorting the GIP values and retaining K = 2M realizations corresponding to the
smallest GIP deviation from the theoretical mean of (3.6). Observe that the AMF perfor-
mance in non-homogeneous clutter degrades severely. Also note that, for this case, NHD
pre-processing restores the AMF performance to its analytical value.

Figure 7 shows a plot of the GIP versus range prior to NHD pre-processing for the
simulated data used in carrying out the performance analysis of Fig. 6. Figure 8 shows a
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Fig. 7. GIP versus range.

plot of the sorted absolute value of the difference between the GIP and its theoretical mean
versus range after NHD pre-processing for the example in Fig. 6. Observe the absence of
discretes in the first K = 2M range cells.
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Figure 9 depicts performance using measured data from the MCARM program [ 13]. For
this case, it is not possible to present performance in terms of detection probability versus
SINK. This is due to the fact that only one realization of target present data is available.
Hence, we present a plot of the detection test statistic versus range. Since the AMF test
statistic is an ad-hoc estimate of the output SINR, and since the probability of detection is
a monotonically increasing function of the output SINR, this is an acceptable performance
metric.
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Table 1
AMF performance with measured data

Algorithm *1l (dB) *2 (dB)

AMF with NHD 13.25 5.68

AMF 11.83 3.38

Performance of the AMF without NHD processing degrades significantly in non-
homogeneous clutter. Performance improvement is noted when the AMF is employed in
non-homogeneous data with NHD pre-processing. Consequently, the use of NHD affords
moderate performance improvement of the AMF test in non-homogeneous clutter. The per-
formance with measured data is characterized by the ratio of the test statistic at the test cell
to the mean of the test statistics formed from adjacent cells, 4'l, and the ratio of the test sta-
tistic at the test cell to the highest test statistic formed from adjacent cells, V'2, respectively.
Table 1 shows these values for the AMF test with and without NHD pre-processing.

6. Conclusions

This paper has made several significant contributions. First, we provided a statistical
characterization of the GIP based NHD developed in [6,7,10,14,15]. We showed that the
underlying GIP statistics deviate significantly when the unknown covariance matrix is es-
timated using finite sample support. A canonical representation for the GIP in terms of two
statistically independent chi-square distributed random variables and the resulting central-F
distribution for the normalized GIP were then used to construct goodness-of-fit tests, whose
performance is presented using both simulated and measured data. Application of this
method as a pre-processing method for training data selection in the adaptive matched filter
algorithm (AMF) was presented. Performance of the AMF in contaminated training data
degrades significantly. The use of our pre-processing method for training data selection
restores the AMF performance to within 3 dB of the optimal matched filter (MF) perfor-
mance. This fact is illustrated with simulated as well as measured data from the MCARM
program. Future work will undertake extensive performance comparisons between covari-
ance based STAP methods such as the AMF and the normalized adaptive matched filter
(NAMF) [11] (with NHD pre-processing) and model-based parametric STAP tests such
as the parametric adaptive matched filter (PAMF) [23], normalized parametric adaptive
matched filter (N-PAMF) [18] and fast adaptive processors [25] in non-homogeneous in-
terference backgrounds.
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Appendix A. Stochastic representation for the normalized GIP

Let Z denote a data matrix whose columns are the previously defined zi, i = 1, 2 ... , K.
The maximum likelihood estimate of the covariance matrix is given by R = 1ZZH. The
data matrix Z and the test data vector x admit a representation of the form

Z = R 1/ 2Y,

x = R1/ 2y, 
(A.1)

where Y is a data matrix whose columns yi, i = 1,2 ... , K, are iid CN(O, I) random
vectors and y is a CN(O, I) random vector which is statistically independent of Y. Hence,
the normalized GIP is expressed as

PI = YHSyly, (A.2)

where .y - ,yyn. Next, we use a Householder transformation defined by A = (I -
2uuH/uHu), where u = y- Ilylle and e= [100...0]7` so that ý = Ay. Also let Y =
AY. Since AAH = AHA = I, it follows that the statistics of V are identical to that of Y.
Consequently, the normalized GIP is expressed as

P/ = ýHS1y. (A.3)

Furthermore, we partition

where yH is the first row of V and yH denotes the (M - 1) x K matrix formed from the

remaining rows of Y. Consequently,
rH H 1YJ Y1~y yY1 Y1

SY=LYHy yHyllj (A.4)

Also, Sy1 admits a representation of the form

_ [S11 S12] (A.5)
S =S 21  22J

Finally, the normalized GIP is expressed as

p,= IIYI12Sii.

However, from the matrix inversion lemma it follows that S11 = (ylHP±yL)y-, where P± =
I - YI1 (yHyIi)-lYH. Since YlI(YHyI 1I)-yH is a projection matrix of rank M - 1, it
follows that P1L is a projection matrix of rank K - M + 1. Consequently,

K-M+1

y'PJy1 = I ly(i)12, (A.6)
i=1

where y(i) - CN(O, 1). Hence, S1l is simply the reciprocal of a chi-squared distrib-
uted random variable with (K - M + 1) complex degrees-of-freedom. Also, since y is
a CN(O, I) random vector, I1y112 is a chi-squared distributed random variable with M com-
plex degrees of freedom. Consequently, the representation of (3.2) follows.
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